Holmes 達の塩化マグネシウム水溶液と塩化カルシウム水溶液の Pitzer 式

本サイト内で「電解質水溶液の熱力学（Pitzer 式）」と題する文書をアップロードしている(http://www.hyogo-u.ac.jp/sci/yshibue/solution.html)。この文書では Holmes et al. (1994) と Holmes and Mesmer (1996) が与えた塩化カルシウム水溶液と塩化マグネシウム水溶液の様々な熱力学的性質を計算する式を解説する。Holmes 達は、これらの論文で示した計算式に現れるパラメータの訂正を行っているので(Holmes et al., 1997), 訂正後のパラメータをここでは考える。

1. はじめに

Holmes et al. (1997) はそれまでの報告中のパラメータを訂正して浸透係数, イオンの平均活量係数, 見かけの相対モルエンタルピー, 見かけの定圧モル熱容量, 見かけのモル体積を計算した。計算結果は数値としてまとめられ, 鮮明な蒸気圧条件と 400 bar において 25°C, 125°C, 225°C で濃度が 0 mol kg⁻¹, 0.1 mol kg⁻¹, 0.5 mol kg⁻¹, 1.0 mol kg⁻¹, 2.0 mol kg⁻¹, 3.0 mol kg⁻¹, 4.0 mol kg⁻¹ の時の値が示されている。ところが, Holmes 達が示した計算式に現れるパラメータの誤りがあり, Holmes et al. (1997) と Holmes and Mesmer (1996) の計算式に誤りがあるためである (澁江, 2008, 2009)。そこで, Holmes 達の計算式とパラメータに誤りがあるものである。Holmes 達の計算式は塩化ナトリウム水溶液に関する Pitzer 式とほとんど同じものであり, 本サイト内の別の文書（塩化ナトリウム水溶液に関する Pitzer 式）で塩化ナトリウム水溶液に関する Pitzer 式を解説している。さらに, Pitzer 式の一般的な解説を本サイト内の別の文書（電解質水溶液の熱力学（Pitzer 式））で解説している。そこで, これらの文書との重複をできる限り避けることにする。なお, Holmes 達はデバイ・ヒュッケルのパラメータ (Aφ, Aθ, Aθ, Aθ) の値を Bradley and Pitzer (1979) の式から計算している。この式についても先に記した本サイト内の解説文書中で示しているので, ここでは解説を省略する。また, Holmes 達は純水の性質を Haar–Gallagher–Kell の式(Haar et al., 1984) で計算しているが, 本サイト内の別の文書（純水のヘルムホルツエネルギーを与える Haar–Gallagher–Kell の式）でこの式について解説しているのでここでは触れられない。

この解説では多数の記号を使用し, 本文中で記号の意味について触れていないものがある。そこで, 使用している記号の一覧を付録 1 に示す。付録 1 で示した定数値の中で気体定数の値は Cohen and Taylor (1973) が与えたものである。

2. 過剰ギブスエネルギーと浸透係数とイオンの平均活量係数

Holmes 達が与えた塩化マグネシウム水溶液あるいは塩化カルシウム水溶液の過剰ギブスエネルギー, 浸透係数, イオンの平均活量係数を計算する式を示す。水 W kg を含み濃度が m mol kg⁻¹ の水溶液の過剰ギブスエネルギー G₆ を考える。この時のイオン強度を I と表し, 定数 b (b = 1.2), 気体定数 R, 温度 T と圧力 p の関数である β(0) と β(1) と C, 温度の関数である α₁ と β₂, 定数 α₂ (α₂ = 12) を用いて Holmes 達は G₆ を式(1)のように与した。温度の単位は絶対温度, 圧力の単位は bar であり, イオン強度の値は塩化マグネシウム水溶液や塩化カルシウム水溶液の場合は質量モル濃度の値の 3 倍になる。

Holmes 達は絶対温度を 1 K で割った値, MPa を単位に取った圧力を 0.1 MPa で割った値, 質量モル濃度を 1 mol kg⁻¹ で割った値を, それぞれ圧力, 圧力, 濃度の値として用いている。この操作は正しく, 温度の自然対数値を取る時に生じる変数の次元に関わる問題を解決している。しかしながら, 式を示す上で煩雑になるので以下の解説では温度, 圧力, 濃度の無次元化を行わないことにする。したがって, 計算式に現れる経験的係数の次元が Holmes 達の式とは違ってくるが, 係数値は共通である。
塩化マグネシウム水溶液と
塩化カルシウム水溶液の Pitzer 式

Pitzer 式（Pitzer, 1995）では \(\alpha_1 \) は定数で 2 と与えられているが、Holmes 達は実験結果とのフィットを向上させるために次のように表した。

\[\alpha_1 = 2 - 1.81 \cdot 10^{-3} (T - 298.15) \quad (2) \]

次に、式(1)の右辺に現れる \(\beta^{(0)} \) と \(\beta^{(1)} \) と \(C \) を Holmes 達は係数 \(z_1 \) から \(z_{17} \) を用いて温度と圧力の関数として表した。\(T_1 \) を 647 K, \(T_2 \) を 227 K とおいて \(\beta^{(0)} \) あるいは \(\beta^{(1)} \) あるいは \(C \) を \(F \) で代表させると次の関数である。

\[
F = z_1 + \frac{z_2}{2} T + \frac{z_3}{6} T^2 + \frac{z_4}{12} T^3 + \frac{z_5}{6} T^2 \left(\ln T - \frac{5}{6} \right) + z_6 \left[\frac{T}{2} + \frac{3T_2^2}{2T} + \frac{T_2(T - T_2)}{T} \ln(T - T_2) \right]
+ z_7 \left[\frac{2(T_1 - T)}{T} + 1 \right] \ln(T_1 - T) + p \left(z_8 + \frac{z_9}{T} + z_{10} T + z_{11} T^2 + \frac{z_{12}}{T - T_2} + \frac{z_{13}}{T_1 - T} \right)
+ p^2 \left(z_{14} + \frac{z_{15}}{T} + z_{16} T + z_{17} T^2 \right) \quad (3)
\]

表1に \(z_1 \) から \(z_{17} \) の値を示す。Holmes 達は係数を \(p_1 \) から \(p_{17} \) として表しているが、圧力と紛らわしいのでここでは \(z_1 \) から \(z_{17} \) を用いている。これより先で用いる係数 \(z_1 \) は、すべて Holmes 達が用いた \(p_1 \) に対応する。式(3)は Holmes et al. (1994) 中の Eq. (32) および Holmes and Mesmer (1996) の Eq. (30) に対応する。Holmes and Mesmer (1996) の Eq. (30) では \(z_6 \) が \(\ln T \) とかけあわされているが、Holmes et al. (1994) 中の Eq. (32) はこの解説中の式(3)と同じである。計算結果から考えると、Holmes and Mesmer (1996) の Eq. (30)の誤植と考えられる。最後に、\(\beta^{(2)} \) は次式で表されている。

\[
\beta^{(2)} = \frac{1}{2} \exp \left(16.5 - \frac{7150}{T} \right) \quad (4)
\]

ここで、式(1)の右辺中の \(a_1, \, a_2, \, \beta^{(0)}, \, \beta^{(1)}, \, \beta^{(2)} \) を含む項を \(B \) として次のように表す。

\[
B = \beta^{(0)} + \frac{2\beta^{(1)}}{\alpha^2_1} \left[1 - (1 + \alpha_1 T^{1/2}) \exp(-\alpha_1 T^{1/2}) \right] + \frac{2\beta^{(2)}}{\alpha^2_2} \left[1 - (1 + \alpha_2 T^{1/2}) \exp(-\alpha_2 T^{1/2}) \right] \quad (5)
\]

このように \(B \) を定義すると式(1)は次のようになる。

\[
\frac{G^E}{RTW} = \frac{-4A\phi \ln \left(1 + b T^{1/2} \right)}{b} + 4m^2 B + 2^{3/2} m^3 C \quad (6)
\]
塩化カルシウム水溶液の
を次のように表すことができる。

\[
\beta = A_0 \ln \left(1 + b t^{1/2}\right) + 4m^2B + 2m^3C \tag{7}
\]

したがって、Holmes 達の式で求められている \(C \) の値は Pitzer が与えた一般式中に現れる \(C \) の値の \(2^{1/2} \) 倍になっているので注意する必要がある。

Pitzer 式では水溶液の浸透係数 \(\phi \) とイオンの平均活量係数 \(\gamma_i \) が以下のように与えられている。まず、
浸透係数は \(B^\phi \) と \(C^\phi \) を用いて次のように表すことができる。
塩化マグネシウム水溶液と塩化カルシウム水溶液のPitzer式

\[
\phi = 1 - \frac{2A_{\phi} l^{1/2}}{1 + bl^{1/2}} + \frac{4}{3} mB^\phi + \frac{2^{5/2}}{3} m^2 C^\phi \quad (8)
\]

ここで、\(B^\phi \)と\(C^\phi \)は\(B \)や\(C \)と次の式で関係付けられる。

\[
B^\phi = \beta^{(0)} + \beta^{(1)} \exp\left(-\alpha_1 l^{1/2}\right) + \beta^{(2)} \exp\left(-\alpha_2 l^{1/2}\right) \quad (9)
\]

\[
C^\phi = 2^{3/2} C \quad (10)
\]

そこで、式(9)と式(10)を式(8)に代入すると次の関係式が得られる。

\[
\phi = 1 - \frac{2A_{\phi} l^{1/2}}{1 + bl^{1/2}} + \frac{4}{3} m\left[\beta^{(0)} + \beta^{(1)} \exp\left(-\alpha_1 l^{1/2}\right) + \beta^{(2)} \exp\left(-\alpha_2 l^{1/2}\right)\right] + \frac{2^4}{3} m^2 C \quad (11)
\]

先に触れたように Holmes 達の式で用いられている\(C \)の値は Pitzer 式で使用されている\(C \)の値の\(2^{3/2}\)倍であるので、Holmes 達が与えた\(C \)の計算式を用いる時には、浸透係数の計算式は次のようになる。

\[
\phi = 1 - \frac{2A_{\phi} l^{1/2}}{1 + bl^{1/2}} + \frac{4}{3} m\left[\beta^{(0)} + \beta^{(1)} \exp\left(-\alpha_1 l^{1/2}\right) + \beta^{(2)} \exp\left(-\alpha_2 l^{1/2}\right)\right] + \frac{2^{5/2}}{3} m^2 C \quad (12)
\]

イオンの平均活量係数は\(B^\gamma \)と\(C^\gamma \)を用いて次のように表すことができる。

\[
\ln\gamma_{\pm} = -2A_{\phi} \left[\frac{l^{1/2}}{1 + bl^{1/2}} + \frac{2\ln(1 + bl^{1/2})}{b}\right] + \frac{4}{3} mB^\gamma + \frac{2^{5/2}}{3} m^2 C^\gamma \quad (13)
\]

ここで、\(B^\gamma \)と\(C^\gamma \)は次式で表されている。

\[
B^\gamma = 2\beta^{(0)} + \frac{2\beta^{(1)}}{\alpha_1^2 l} \left[1 - \left(1 + \alpha_1 l^{1/2} - \frac{\alpha_2^2 l}{2}\right) \exp\left(-\alpha_1 l^{1/2}\right)\right] + \frac{2\beta^{(2)}}{\alpha_2^2 l} \left[1 - \left(1 + \alpha_2 l^{1/2} - \frac{\alpha_2^2 l}{2}\right) \exp\left(-\alpha_2 l^{1/2}\right)\right] \quad (14)
\]

\[
C^\gamma = 3 \cdot 2^{1/2} C \quad (15)
\]

Holmes 達の式で用いられている\(C \)の値は Pitzer 式で使用されている\(C \)の値の\(2^{5/2}\)倍であるので、Holmes 達が与えた\(C \)の計算式を用いる時には、イオンの平均活量係数の計算式は\(B^\gamma \)と\(C^\gamma \)を式(14)に代入して次のようになる。

\[
\ln\gamma_{\pm} = -2A_{\phi} \left[\frac{l^{1/2}}{1 + bl^{1/2}} + \frac{2\ln(1 + bl^{1/2})}{b}\right] + \frac{4}{3} m\left[2\beta^{(0)} + \frac{2\beta^{(1)}}{\alpha_1^2 l} \left[1 - \left(1 + \alpha_1 l^{1/2} - \frac{\alpha_2^2 l}{2}\right) \exp\left(-\alpha_1 l^{1/2}\right)\right]\right]
\]

\[
+ \frac{4}{3} m\left[\frac{2\beta^{(2)}}{\alpha_2^2 l} \left[1 - \left(1 + \alpha_2 l^{1/2} - \frac{\alpha_2^2 l}{2}\right) \exp\left(-\alpha_2 l^{1/2}\right)\right]\right] + 2^{3/2} m^2 C \quad (16)
\]
3. 見かけの相対モルエンタルピー（過剰モルエンタルピー）

水の基準状態を 0 K の理想気体、電解質の基準状態を 298.15 K で 1atm (= 1.01325 bar)の時とおく。
そして、基準状態の時にエンタルピーの値が 0 であるとおく。なお、標準状態の取り方は、通例と同じように Holmes 達は任意と温度・圧力条件において電解質が無限希釈状態の時と取っている。

まず、Pitzer 式では見かけの相対モルエンタルピー \(\phi_L \) は次のように表されている。

\[
\phi_L = \frac{3A_m \ln(1 + b l^{1/2})}{b} - 4RT^2 \left[m \left(\frac{\partial B}{\partial T} \right)_{p,m} + 2m^2 \left(\frac{\partial C}{\partial T} \right)_{p,m} \right] \quad (17)
\]

見かけの相対モルエンタルピーは過剰モルエンタルピーともよばれている。Holmes 達の式で用いられている C の値は Pitzer が使用した C の値の 2^{1/2} 倍であるので、Holmes 達が与えた C の計算式を用いる場合には、見かけの相対モルエンタルピーの計算式は次のようになる。

\[
\phi_L = \frac{3A_m \ln(1 + b l^{1/2})}{b} - 4RT^2 \left[m \left(\frac{\partial B}{\partial T} \right)_{p,m} + 2^{-1/2}m^2 \left(\frac{\partial C}{\partial T} \right)_{p,m} \right] \quad (18)
\]

右辺のブラケット内の温度微分は以下のように表すことができる。まず、B の温度微分は \(\alpha_2 \) が定数であることから次のように表せる。

\[
\left(\frac{\partial B}{\partial T} \right)_{p,m} = \left(\frac{\partial \beta^{(0)}}{\partial T} \right)_p + \frac{2}{\alpha_1^2 I} \left[1 - \left(1 + \alpha_1 l^{1/2} \right) \exp \left(-\alpha_1 l^{1/2} \right) \right] \left(\frac{\partial \beta^{(1)}}{\partial T} \right)_p
\]

\[
+ \frac{2}{\alpha_2^2 I} \left[1 - \left(1 + \alpha_2 l^{1/2} \right) \exp \left(-\alpha_2 l^{1/2} \right) \right] \left(\frac{d \beta^{(2)}}{dT} \right)
\]

\[
+ \beta^{(1)} \left(\frac{d \alpha_1}{dT} \right) \left(\frac{2}{\alpha_1^2 I} \right) \left[2 + 2 \alpha_1 T^{1/2} + \alpha_1^2 I \exp \left(-\alpha_1 T^{1/2} \right) \right] \quad (19)
\]

\(\beta^{(0)}, \beta^{(2)}, \alpha_1 \) の温度に関する微分式は式(3)と式(4)と式(2)より次の通りである。

\[
\left(\frac{\partial \beta^{(0)}}{\partial T} \right)_p = \frac{z_2}{2} + \frac{z_3 T}{3} + \frac{z_4 T^2}{4} + \frac{z_5 T}{3} \left(\ln T - \frac{1}{3} \right) + z_6 \left[\frac{1}{2} - \frac{3T^2}{2T^2 + \frac{T^2 \ln(T - T_2)}{T^2} + \frac{T_2}{T}} \right]
\]

\[
+ z_7 \left[-\frac{2T \ln(T - T_2)}{T^2} - \frac{2T - T_2}{T (T - T_2)} \right]
\]

\[
+ p \left[-\frac{z_9}{2T} + z_{10} + 2z_1 T - \frac{z_{12}}{(T - T_2)^2} + \frac{z_{11}}{(T - T_2)^2} \right] + p^2 \left[-\frac{z_{14}}{T^2} + z_{16} + 2z_{17} T \right] \quad (20)
\]
兵庫教育大学 澁江靖弘
（シブエ ヤスヒロ）

塩化マグネシウム水溶液と
塩化カルシウム水溶液のPitzer式

\[
\frac{d\beta^{(2)}}{dT} = -3575 \frac{1}{T^2} \exp\left(\frac{16.5 - 7150}{T}\right)
\]

\[
\frac{d\alpha}{dT} = -1.81 \cdot 10^{-3}
\]

\(\beta^{(1)}\)の温度微分は式(21)とまったく同じ形式の式になるので省略するが、\(z_2\)から\(z_17\)の値を入れ替える必要があることは言うまでもない。同様に、\(z_2\)から\(z_17\)の値を入れ替えば\(CL\)の計算式も式(20)の右辺とまったく同じ形式になる。以上の結果を用いて、

\[
\left(\frac{\partial \beta^{(0)}}{\partial T}\right)_p, \left(\frac{\partial \beta^{(1)}}{\partial T}\right)_p, \frac{d\beta^{(2)}}{dT}, \frac{d\alpha}{dT}
\]
の計算式を式(19)に代入して求められる式と、

\[
\left(\frac{\partial C}{\partial T}\right)_p
\]
の計算式を式(18)に代入すれば\(\phi L\)の計算式を得ることができる。\(\phi L\)の計算式は長くなるので省略する。

4. 見かけの定圧モル熱容量

電解質の見かけの定圧モル熱容量\(\phi C_p\)は、標準状態における電解質の部分モル定圧熱容量\(C_p^o\)と見かけの相対モルエンタルピーを用いて次のように表すことができる。

\[
\phi C_p = C_p^o + \frac{3A f \ln \left(1 + bL^{1/2}\right)}{b} - 4R \left\{ m \left[\frac{\partial^2 B^L}{\partial T^2} \right]_{p,m} + 2m^2 \left[\frac{\partial C^L}{\partial T} \right]_{p} \right\}
\]

\[
= C_p^o - \frac{3A f \ln \left(1 + bL^{1/2}\right)}{b} - 4RT^2 \left\{ m \left[\frac{2B^L}{T} + \left(\frac{\partial B^L}{\partial T} \right)_{p,m} \right] + 2m^2 \left[\frac{2C^L}{T} + \left(\frac{\partial C^L}{\partial T} \right)_{p} \right] \right\}
\]

ここで、\(B'\)、\(C'\)は次のように定義されている。

\[
B' = \left(\frac{\partial B^L}{\partial T} \right)_{p,m} + \frac{2B^L}{T} = \left(\frac{\partial^2 B}{\partial T^2} \right)_{p,m} + \frac{2}{T} \left(\frac{\partial B}{\partial T} \right)_{p,m}
\]

\[
C' = \left(\frac{\partial C^L}{\partial T} \right)_{p,m} + \frac{2C^L}{T} = \left(\frac{\partial^2 C}{\partial T^2} \right)_{p} + \frac{2}{T} \left(\frac{\partial C}{\partial T} \right)_{p}
\]

したがって、\(B'\)と\(C'\)を用いて見かけの定圧モル熱容量は次式のように表せる。

\[
\phi C_p = C_p^o + \frac{3A f \ln \left(1 + bL^{1/2}\right)}{b} - 4RT^2 \left(mb' + 2m^2 C' \right)
\]

Holmes達の式で用いられている\(C\)の値はPitzerが使用した\(C\)の値の2\(^{1/2}\)倍であるので、Holmes達が与えた\(C\)の計算式を用いる時には、見かけの定圧モル熱容量の計算式は次のようにになる。

\[
\phi C_p = C_p^o + \frac{3A f \ln \left(1 + bL^{1/2}\right)}{b} - 4RT^2 \left(mb' + 2^{-1/2} m^2 C' \right)
\]

なお、Holmes達の論文では標準状態における部分モル定圧熱容量の代わりに電解質が無限希釈状態時の見かけの定圧モル熱容量が用語として使用されている。これらの値は共通である。本サイト内
の解説文書では「標準状態における部分モル定圧熱容量」という用語を使用してきたので、ここでもこの用語を使用する。標準状態における部分モル定圧熱容量を Holmes 達は温度に依存する関数（J_0と J_1と J_2と J_3）と圧力を用いて次のように表した。

$$C_p = J_0 - J_1 p - J_2 p^2 - J_3 p^3$$ (28)

$$J_0 = z_{24} + \frac{z_{25}}{T} + z_{26} \ln T + z_{27} T + z_{28} T^2 + \frac{z_{29}}{T - T_1} + \frac{z_{30}}{T_1 - T}$$ (29)

$$J_1 = \frac{2z_{1,19}}{T^2} + 2z_{1,21} T + \frac{2z_{1,22} T}{(T - T_2)^3} + \frac{2z_{1,25} T}{(T_1 - T)^3}$$ (30)

$$J_2 = \frac{2z_{2,19}}{T^2} + 2z_{2,21} T + \frac{2z_{2,22} T}{(T - T_2)^3} + \frac{2z_{2,25} T}{(T_1 - T)^3}$$ (31)

$$J_3 = \frac{2z_{3,19}}{T^2} + 2z_{3,21} T + \frac{2z_{3,22} T}{(T - T_2)^3} + \frac{2z_{3,25} T}{(T_1 - T)^3}$$ (32)

係数である z_{24}から z_{29} から $z_{1,19}$から $z_{1,21}$から $z_{1,22}$から $z_{1,25}$から $z_{2,19}$から $z_{2,21}$を表2に示す（先に記したように Holmes 達は変数名として p を用いているが、ここでは圧力との混同を避けるために変数名を z にしている）。B'と C'は、Bと Cの計算式から求めることができる。

$$B = \beta^{(0)} h_1 + \beta^{(1)} h_2$$ (35)

そこで、式(24)で定義した B' は次式で求めることができる。

$$B' = \frac{\partial^2 \beta^{(0)}}{\partial T^2} p + \frac{\partial^2 \beta^{(1)}}{\partial T^2} h_1 + 2 \left(\frac{\partial \beta^{(1)}}{\partial T} \right) p \left(\frac{\partial h_1}{\partial T} \right)_m + \beta^{(1)} \left(\frac{\partial^2 h_1}{\partial T^2} \right) + \left(\frac{\partial^2 \beta^{(2)}}{\partial T^2} \right) h_2$$

$$+ 2 \left(\frac{\partial \beta^{(2)}}{\partial T} \right) p \left(\frac{\partial h_2}{\partial T} \right)_m + \beta^{(2)} \left(\frac{\partial^2 h_2}{\partial T^2} \right) + 2 \left(\frac{\partial B}{\partial T} \right) p$$ (36)

先に記したように α_2 は定数であるので温度微分は常に 0 である。
塩化マグネシウム水溶液と塩化カルシウム水溶液の Pitzer 式

表 2 Holmes 達が与えた式(29)から式(32)と式(51)から式(53)中の係数値

<table>
<thead>
<tr>
<th></th>
<th>塩化マグネシウム</th>
<th>塩化カルシウム</th>
</tr>
</thead>
<tbody>
<tr>
<td>z1.18</td>
<td>4.07423472·10^1</td>
<td>5.28444257·10^1</td>
</tr>
<tr>
<td>z1.19</td>
<td>-2.72444581·10^3</td>
<td>-4.29572657·10^3</td>
</tr>
<tr>
<td>z1.20</td>
<td>-9.72127233·10^{-2}</td>
<td>-1.27472817·10^{-1}</td>
</tr>
<tr>
<td>z1.21</td>
<td>1.60473548·10^{-4}</td>
<td>1.89149250·10^{-4}</td>
</tr>
<tr>
<td>z1.22</td>
<td>-7.61133887·10^1</td>
<td>-7.61133887·10^1</td>
</tr>
<tr>
<td>z1.23</td>
<td>-5.03018030</td>
<td>-5.03018030·10^3</td>
</tr>
<tr>
<td>z2.18</td>
<td>-8.38148908·10^{-2}</td>
<td>-1.02744655·10^{-1}</td>
</tr>
<tr>
<td>z2.19</td>
<td>9.10259739·10^0</td>
<td>1.01105277·10^1</td>
</tr>
<tr>
<td>z2.20</td>
<td>2.20132372·10^{-4}</td>
<td>2.92179180·10^{-4}</td>
</tr>
<tr>
<td>z2.21</td>
<td>-2.60875181·10^{-7}</td>
<td>-3.84715211·10^{-7}</td>
</tr>
<tr>
<td>z2.22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>z2.23</td>
<td>3.94904571·10^0</td>
<td>5.72397675·10</td>
</tr>
<tr>
<td>z3.18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>z3.19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>z3.20</td>
<td>1.81254274·10^{-8}</td>
<td>1.81254274·10^{-8}</td>
</tr>
<tr>
<td>z3.21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>z3.22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>z3.23</td>
<td>-1.91527935·10^{-3}</td>
<td>-1.91527935·10^{-3}</td>
</tr>
<tr>
<td>z24</td>
<td>-1.96343826·10^6</td>
<td>-1.96357369·10^6</td>
</tr>
<tr>
<td>z25</td>
<td>4.20958881·10^{-7}</td>
<td>4.21200505·10^{-7}</td>
</tr>
<tr>
<td>z26</td>
<td>3.69032606·10^{-5}</td>
<td>3.69032606·10^{-5}</td>
</tr>
<tr>
<td>z27</td>
<td>-1.09727522·10^{-5}</td>
<td>-1.09727522·10^{-3}</td>
</tr>
<tr>
<td>z28</td>
<td>5.68603297·10^{-1}</td>
<td>5.68603297·10^{-1}</td>
</tr>
<tr>
<td>z29</td>
<td>-3.02488974·10^{4}</td>
<td>-3.05393606·10^{4}</td>
</tr>
<tr>
<td>z30</td>
<td>-1.27725204·10^{6}</td>
<td>-1.25806790·10^{6}</td>
</tr>
</tbody>
</table>
まず，h_1 と h_2 を温度で微分すると次式が得られる。

$$
\left(\frac{\partial h_1}{\partial T} \right)_m = -1.81 \cdot 10^{-3} \left(2 \left[\frac{2}{\alpha^3_1} \left(-2 + \left(2 + 2\alpha_1 I \right)^{1/2} + \alpha_1^2 I \right) \exp \left(-\alpha_1 I \right) \right] \right) (37)
$$

$$
\left(\frac{\partial^2 h_1}{\partial T^2} \right)_m = \left(-1.81 \cdot 10^{-3} \right)^2 \left(2 \left[\frac{2}{\alpha^3_1} \left(6 - \left(6\alpha_1 I \right)^{1/2} + 3 \alpha_1^2 I + \alpha_1^3 I^{3/2} + 6 \right) \exp \left(-\alpha_1 I \right) \right] \right) (38)
$$

$$
\left(\frac{\partial h_2}{\partial T} \right)_m = 0 (39)
$$

$$
\left(\frac{\partial^2 h_2}{\partial T^2} \right)_m = 0 (40)
$$

$
\beta^{(0)}$ と α_1 の 1 階微分は式(20)と式(22)に示した。また，$
\beta^{(0)}$ と α_1 の 2 階微分は次の通りである。

$$
\left(\frac{\partial^2 \beta^{(0)}}{\partial T^2} \right)_p = \frac{z_3}{3} + \frac{z_4}{2} + \frac{z_5}{3} \left(\ln T + \frac{2}{3} \right) + \frac{z_6}{T^2} \left[\frac{3T_2}{T} - \frac{2T_2 \ln (T - T_2)}{T} + \frac{T_2}{T - T_2} - 1 \right]
$$

$$
+ \frac{z_7}{T^2} \left[\frac{2T_1}{T - T_2} + \frac{4T T_1 \ln (T_1 - T)}{T^3} + \frac{1}{T (T - T_2)} - \frac{2T_1 - T_2}{T (T_1 - T)^2} \right]
$$

$$
+ \frac{2}{T^3} \left[\frac{z_9}{T^3} + \frac{z_{11}}{(T - T_2)^3} + \frac{z_{13}}{(T_1 - T)^3} \right] + 2 \rho^2 \left(\frac{z_{15}}{T^3} + z_{17} \right) (41)
$$

$$
\frac{d^2 \alpha_1}{dT^2} = 0 (42)
$$

$(\partial^2 \beta^{(0)}/\partial T^2)_p$ は式(41)とまったく同じ式で求められる。ただし，z_1 から z_{17} の値を入れ替える必要があることは言うまでもない。$
\beta^{(2)}$ の 1 階微分は式(21)に示したので，ここでは省略する。$
\beta^{(2)}$ の 2 階微分は次の通りである。

$$
\frac{d^2 \beta^{(2)}}{dT^2} = \frac{3575}{T^3} \left(2 - \frac{7150}{T} \right) \exp \left[16.5 - \left(\frac{7150}{T} \right) \right] (43)
$$

h_1, h_2, α_1, α_2, $\beta^{(0)}$, $\beta^{(1)}$, $\beta^{(2)}$ を温度微分して得られる結果と式(19)を組み合わせて式(36)に代入すれば B' を求めることができる。最後に，$(\partial^2 C/\partial T^2)_p$ の計算式は式(41)の右辺と同じ形の式になる。この時，z_1 から z_{17} の値を入れ替える必要があることは言うまでもない。したがって，C' は次のように表すことができる。
塩化マグネシウム水溶液と塩化カルシウム水溶液のPitzer式

\[
C^J = \left(\frac{\partial^2 C}{\partial T^2} \right)_p + \frac{2}{T} \left(\frac{\partial C}{\partial T} \right)_p
\]

\[
= \frac{z_3}{3} + \frac{z_4 T}{2} + \frac{z_5}{3} \left(\ln T + \frac{2}{3} \right) + \frac{z_6}{T^2} \left[\frac{3T_2}{T} - \frac{2T_2 \ln(T - T_2)}{T} + \frac{T_2}{T - T_2} \right]
\]

\[
+z_7 \left[\frac{2T_1}{T^2 (T_1 - T)} + \frac{4T_2 \ln(T - T_2)}{T^3} + \frac{1}{T (T_1 - T)} \left(\frac{2T_2}{T_2} - \frac{T_2}{(T_1 - T)^2} \right) \right]
\]

\[
+ 2p \left[\frac{z_9}{T^3} + \frac{z_{11}}{3} + \frac{z_{12}}{(T - T_2)^3} + \frac{z_{13}}{(T_1 - T)^3} \right] + 2p^2 \left(\frac{z_{15}}{T^3} + z_{17} \right)
\]

\[
+ \frac{2}{T} \left[\frac{z_2}{2} + \frac{z_3 T}{3} + \frac{z_4 T^2}{4} + \frac{z_5 T}{3} \left(\ln T - \frac{1}{3} \right) \right]
\]

\[
+ \frac{2}{T} \left[\frac{z_6}{2} \left(\frac{1}{2} \frac{3T_2^2}{2T^2} + \frac{T_2 \ln(T - T_2)}{T^2} + \frac{T_2}{T} \right) + z_7 \left[-\frac{2T_2 \ln(T - T_2)}{T^2} - \frac{2T_2}{T (T_1 - T)} \right] \right]
\]

\[
+ \frac{2p}{T} \left[-\frac{z_9}{T^2} + \frac{z_{10}}{2} + 2z_{11} T - \frac{z_{12}}{(T - T_2)^2} + \frac{z_{13}}{(T_1 - T)^2} \right] + 2p^2 \left(\frac{z_{15}}{T^2} + z_{16} + 2z_{17} T \right) (44)
\]

右辺を整理すると次の式のようになる。

\[
C^J = \frac{z_2}{T} + z_3 + z_4 T + z_5 \ln T + \frac{z_6}{T - T_2} - \frac{z_7}{(T_1 - T)^2} + p \left[\frac{2z_{10}}{T} - 6z_{11} + \frac{2z_{12}}{(T - T_2)^3} + \frac{2z_{13}}{T (T_1 - T)^3} \right]
\]

\[+ p^2 \left(\frac{2z_{16}}{T} + 6z_{17} \right) (45) \]

はじめに述べたように式(27)を用いて求められる塩化マグネシウムや塩化カルシウムの見かけの定圧モル熱容量の値はHolmes et al. (1997)の数表値と異なっている。異なる原因を澁江(2009)は標準状態での見かけの定圧モル熱容量の計算式に由来すると論じた。澁江(2009)によればHolmes達が与えたパラメータを用いた計算結果は数表値中のすべての値について72.5 J mol\(^{-1}\)K\(^{-1}\)あるいは72.6 J mol\(^{-1}\)K\(^{-1}\)だけシステムに小さく、澁江(2009)は温度・圧力に依存しない項の係数\(z_{24}\)に72.59を補正項として加えた。

本解説の表2で示した\(z_{24}\)の値に補正項を加えて見かけの定圧モル熱容量を計算すると数表値から\(\big| z_{24} \big|\)の値が認められたのは次の圧力-温度-濃度条件の時であった。塩化マグネシウム水溶液については、飽和蒸気圧条件で225°C、0 m の時の値（つまり、標準状態での定圧モル熱容量の値）が0.1大きくなる。これ以外の計算値はすべて数表値と一致した。塩化カルシウム水溶液については、1 atm−25°C−1 mol kg\(^{-1}\)，飽和蒸気圧−225°C−0 mol kg\(^{-1}\)，400 bar−125°C−0 mol kg\(^{-1}\)，400 bar−225°C−0 mol kg\(^{-1}\)，400 bar−225°C−0.5 mol kg\(^{-1}\)の時に0.1大きくなる。
5. 見かけのモル体積

任意の温度・圧力における電解質の見かけのモル体積\overline{V}を与える式を標準状態における電解質の部分モル体積V^*を用いて表す式を以下に示す。Holmes達の論文では標準状態における部分モル体積の代わりに電解質が無限希釈状態の時の見かけのモル体積が用語として使用されている。これらの値は共通である。サイト内の解説文書では「標準状態における部分モル体積」を用語として使用してきたので、ここでもこの用語を使用する。

まず、B'とC'を次のように定義する。

\[
B' = \left(\frac{\partial B}{\partial \beta} \right)_{T, m}, \quad (46)
\]

\[
C' = \left(\frac{\partial C}{\partial \beta} \right)_{T}. \quad (47)
\]

見かけのモル体積の計算式は次のように表せる。

\[
\phi V = \overline{V} + \frac{3A_V \ln (1 + bT^{1/2})}{b} + 4RT \left(mV' + 2m^2C' \right) \quad (48)
\]

Holmes達の式で用いられているCの値はPitzerの定義に沿って求められるCの値の2$^{1/2}$倍であるので、Holmes達が与えたCの計算式を用いる時には次のようになる。

\[
\phi V = \overline{V} + \frac{3A_V \ln (1 + bT^{1/2})}{b} + 4RT \left(mV' + 2^{-1/2}m^2C' \right) \quad (49)
\]

実際、Holmes達の論文中式(49)を用いていることが記されている。しかしながら、式(49)を用いて見かけのモル体積を計算するとHolmes et al. (1997)中の数表値から大きくかけ離れる結果が得られる。澁江(2009)はこの原因を考察したので、Holmes達の式の解釈を続けながら、数表値からかけ離れる原因についても記す。

Holmes達は標準状態での電解質の見かけのモル体積を、3つの温度の関数（V_0とV_1とV_2）と圧力を用いて次のように表した。

\[
\overline{V} = V_0 + V_1 p + V_2 p^2 \quad (50)
\]

\[
V_0 = z_{1,18} + z_{1,19} T + z_{1,20} T + z_{1,21} T^2 + \frac{z_{1,22}}{T} + \frac{z_{1,23}}{T^2}, \quad (51)
\]

\[
V_1 = z_{2,18} + z_{2,19} T + z_{2,20} T + z_{2,21} T^2 + \frac{z_{2,22}}{T} + \frac{z_{2,23}}{T^2}, \quad (52)
\]

\[
V_2 = z_{3,18} + z_{3,19} T + z_{3,20} T + z_{3,21} T^2 + \frac{z_{3,22}}{T} + \frac{z_{3,23}}{T^2}. \quad (53)
\]

パラメータである$z_{1,18}$から$z_{1,23}$、$z_{2,18}$から$z_{2,23}$、$z_{3,18}$から$z_{3,23}$の値は表2に示したものである。これらのパラメータの大部分は標準状態における定圧モル熱容量の計算にも用いられている。これは部分モル定圧
熱容量と部分モル体積の間に次の関係式が成立するためである。

\[
\left(\frac{\partial C_p}{\partial p} \right)_T = -T \left(\frac{\partial^2 V}{\partial T^2} \right)_p
\] (54)

しかしながら，Holmes 達が与えた電解質に関する \(\overline{C}_p \) と \(\overline{V} \) の計算式を式(54)の両辺に代入すると等式が成立しない。つまり，式(28)と式(50)を式(54)の両辺に代入すると等式が成立しない。したがって，Holmes 達の式に誤りがある。そこで，次のような計算を行う。式(28)を式(54)の左辺に代入して計算した後で，\(-(1/T) \)で割る。その後で，\(T \)に関して2回積分する。この結果，次式が得られる。

\[
\overline{V} = \frac{z_{1,19}}{T} + \frac{z_{1,22}}{T - T_2} + \frac{z_{1,23}}{T_1 - T} + 2p \left(\frac{z_{2,19}}{T} + \frac{z_{2,22}}{T - T_2} + \frac{z_{2,23}}{T_1 - T} \right)
\]

\[+ 3p^2 \left(\frac{z_{3,19}}{T} + \frac{z_{3,22}}{T - T_2} + \frac{z_{3,23}}{T_1 - T} \right) \]

\[+ (\text{積分定数} 1) \times T + (\text{積分定数} 2) \] (55)

圧力 \(p \) の係数として2, \(p^2 \) の係数として3 がつくることから明らかのように，式(50)には誤りがある。また，部分モル定圧熱容量の単位は \(\text{J mol}^{-1} \cdot \text{K}^{-1} \) であり部分モル体積の単位は \(\text{cm}^3 \text{mol}^{-1} \) であるので，10 cm\(^3\) bar = 1 J の関係式を考えると部分モル体積の計算ではパラメータの値を 10 倍する必要がある。さらに，式(51)から式(53)で現れる \(z_{1,19}, z_{1,22}, z_{1,23}, z_{2,19}, z_{2,22}, z_{2,23}, z_{3,19}, z_{3,22}, z_{3,23} \) は温度 \(T \) がかけあわされていること，\(z_{1,18}, z_{2,18}, z_{3,18} \) には温度の関数が掛け合わされていないことを考えて，積分定数を含む2つの項をそれぞれ次式のように表す。

(積分定数 1) \(\times T = 10z_{1,20}T + 20z_{2,20}pT + 30z_{2,20}p^2T \) (56)

(積分定数 2) = 10z_{1,18} + 20z_{2,18}p + 30z_{3,18}p^2 (57)

このようにすると，次の関係式が得られる。

\[
\overline{V} = 10 \left(\frac{z_{1,18}}{T} + \frac{z_{1,19}}{T} + \frac{z_{1,20}}{T} + \frac{z_{1,22}}{T - T_2} + \frac{z_{1,23}}{T_1 - T} \right)
\]

\[+ 20p \left(\frac{z_{2,18}}{T} + \frac{z_{2,19}}{T} + \frac{z_{2,20}}{T} + \frac{z_{2,22}}{T - T_2} + \frac{z_{2,23}}{T_1 - T} \right) \]

\[+ 30p^2 \left(\frac{z_{3,18}}{T} + \frac{z_{3,19}}{T} + \frac{z_{3,20}}{T} + \frac{z_{3,22}}{T - T_2} + \frac{z_{3,23}}{T_1 - T} \right) \] (58)

この関係式が正しいと仮定して，式(51)から式(53)で与えられる \(V_0 \) と \(V_1 \) と \(V_2 \) を用いて式(50)を次式のように修正する。

\[
\overline{V} = 10V_0 + 20V_1p + 30V_2p^2 \] (59)

実際，式(59)を用いて標準状態における電解質の部分モル体積を計算すると，Holmes et al. (1997)中の
数表値とすべて一致する。ところが、式(59)を用いて電解質の濃度が0より大きさの時の見かけのモル体積を計算すると、すべての圧力温度条件で高濃度領域になると計算結果が数表値からずれる。澁江(2009)はこの原因がモル体積の計算式にあり、Holmes et al. (1997)中の数表値と一致するような見かけのモル体積の計算式は次式の可能性が高いことを示した。

\[
\phi V = \bar{V} + \frac{3A_v \ln(1 + b r^{1/2})}{b} + 4RT \left(m B' + 2^{1/2} m^2 C' \right) \tag{60}
\]

この式を用いて塩化マグネシウムと塩化カルシウムの見かけのモル体積を計算すると、いずれの電解質についてもすべての圧力温度条件で数表値と一致する。

6. 電解質の部分モルエンタルピー、部分モルエントロピー、部分モルギブスエネルギー

ここでは、標準状態における塩化マグネシウムや塩化カルシウムの部分モル定圧熱容量と部分モル体積を用いて、任意の温度・圧力における塩化カリウムの部分モルエンタルピー、部分モルエントロピーおよび部分モルギブスエネルギーを計算する式を解説する。

標準状態における電解質の部分モル定圧熱容量を用いて任意の温度・圧力における電解質の部分モルエンタルピー \(\bar{H}^n(T, p) \) を以下の関係式で求めることができる。

\[
\bar{H}^n(T, p) = \bar{H}^n(298.15K, \text{latm}) + \left[\bar{H}^n(298.15K, p) - \bar{H}^n(298.15K, 1 \text{ atm}) \right]
\]

\[+ \left[\bar{H}^n(T, p) - \bar{H}^n(298.15K, p) \right] \tag{61}\]

右辺の第一項は基準状態でのエンタルピーであり、ここでは0と置いている。右辺の第二項は次式で示す部分モルエンタルピーの圧力依存性を用いて求めることができる。

\[
\left(\frac{\partial \bar{H}^n}{\partial p} \right)_T = \bar{V} - T \left(\frac{\partial \bar{V}}{\partial T} \right)_p \tag{62}\]

右辺の第三項は、部分モル定圧熱容量を温度に関して積分すれば求められる。したがって、任意の温度・圧力における電解質の部分モルエンタルピーは1.01325 barを \(p_0 \)、298.15 Kを \(T_0 \)と表して次式で計算できることがになる。

\[
\bar{H}^n(T, p) = \int_{p_0}^{p} \left[\bar{V} - T \left(\frac{\partial \bar{V}}{\partial T} \right)_p \right] dp + \int_{T_0}^{T} \frac{T}{C_p} \ dT \tag{63}\]

右辺の第一項中のプラケット内の項を式(58)を用いて計算すると次式のようになる。
兵庫教育大学 澁江靖弘
（シブエ ヤスヒロ）

塩化マグネシウム水溶液と塩化カルシウム水溶液のPitzer式

\[
\begin{align*}
\bar{V}^2 - T \left(\frac{\partial \bar{V}}{\partial T} \right)_p &= 10 \left[z_{1,18} + \frac{2z_{1,19}}{T} - z_{1,21}T^2 + \frac{z_{1,22}(2T - T_2)}{(T - T_2)^2} + \frac{z_{1,23}(T_1 - 2T)}{(T_1 - T)^2} \right] \\
+ 20p & \left[z_{2,18} + \frac{2z_{2,19}}{T} - z_{2,21}T^2 + \frac{z_{2,22}(2T - T_2)}{(T - T_2)^2} + \frac{z_{2,23}(T_1 - 2T)}{(T_1 - T)^2} \right] \\
+ 30p^2 & \left[z_{3,18} + \frac{2z_{3,19}}{T} - z_{3,21}T^2 + \frac{z_{3,22}(2T - T_2)}{(T - T_2)^2} + \frac{z_{3,23}(T_1 - 2T)}{(T_1 - T)^2} \right]
\end{align*}
\]

（64）

右辺を計算して求められる値の単位は \(\text{cm}^3 \text{ bar} \text{ mol}^{-1} \) であるので、単位を \(\text{J} \text{ mol}^{-1} \) に変換するために 10 で割っておく必要がある。したがって、式(63)の右辺の第一項は次のようになる。

\[
\begin{align*}
\int & \left[\bar{V}^2 - T \left(\frac{\partial \bar{V}}{\partial T} \right)_p \right] dp \\
& = \left[z_{1,18} + \frac{2z_{1,19}}{T} - z_{1,21}T^2 + \frac{z_{1,22}(2T - T_2)}{(T - T_2)^2} + \frac{z_{1,23}(T_1 - 2T)}{(T_1 - T)^2} \right] (p - p_0) \\
+ & \left[z_{2,18} + \frac{2z_{2,19}}{T} - z_{2,21}T^2 + \frac{z_{2,22}(2T - T_2)}{(T - T_2)^2} + \frac{z_{2,23}(T_1 - 2T)}{(T_1 - T)^2} \right] (p^2 - p_0^2) \\
+ & \left[z_{3,18} + \frac{2z_{3,19}}{T} - z_{3,21}T^2 + \frac{z_{3,22}(2T - T_2)}{(T - T_2)^2} + \frac{z_{3,23}(T_1 - 2T)}{(T_1 - T)^2} \right] (p^3 - p_0^3)
\end{align*}
\]

（65）

次に、式(63)の右辺の第二項の計算式を示す。\(\bar{C}_p \)を与える式は式(28)に式(29)から式(32)を代入すれば求めることができる。そこで、圧力が \(p \) の時に温度が 298.15 K から \(T \) に変化した時の積分値を求めればよいことになる。この計算式は次の通りである。
塩化マグネシウム水溶液と
塩化カルシウム水溶液のPitzer式

そこで，式(65)から求められる値と式(66)から求められる値を式(63)の右辺に代入すれば，任意の温度・圧力条件での電解質の部分モルエンタルピーを求めることができる。計算式を示すと長くなるので省略する。

次に，電解質の部分モルエントロピーについて記す。Holmes 達の式では，エンタルピーの基準状態が指定されていない。そこで，ここでは塩化ナトリウム水溶液と同様に，溶媒と溶質のいずれにおいても0 Kで0とおく。298.15 Kで1 atmの時で標準状態（塩化マグネシウムあるいは塩化カルシウムが無限稀釀状態の時）における電解質の部分モルエントロピーはマグネシウムイオンの値（あるいはカルシウムイオンの値）に塩化物イオンの値の2倍を加えて求めることができる。先行研究よりPitzer (1995)はこの条件下でのマグネシウムイオン，カルシウムイオン，塩化物イオンの部分モルエントロピーを気体定数で割った値として，それぞれ，−16.64, −6.4, 6.778とした。したがって，部分モルエントロピーの値を気体定数で割った値で示すと，塩化マグネシウムが3.084で塩化カルシウムが7.156になる。

任意の温度・圧力での標準状態における電解質の部分モルエントロピーは以下の関係式で求められる。

ここで，式(65)から求められる値と式(66)から求められる値を式(63)の右辺に代入すれば，任意の温度・圧力条件での電解質の部分モルエンタルピーを求めることができる。計算式を示すと長くなるので省略する。

次に，電解質の部分モルエントロピーについて記す。Holmes 達の式では，エンタルピーの基準状態が指定されていない。そこで，ここでは塩化ナトリウム水溶液と同様に，溶媒と溶質のいずれにおいても0 Kで0とおく。298.15 Kで1 atmの時で標準状態（塩化マグネシウムあるいは塩化カルシウムが無限稀釀状態の時）における電解質の部分モルエントロピーはマグネシウムイオンの値（あるいはカルシウムイオンの値）に塩化物イオンの値の2倍を加えて求めることができる。先行研究よりPitzer (1995)はこの条件下でのマグネシウムイオン，カルシウムイオン，塩化物イオンの部分モルエントロピーを気体定数で割った値として，それぞれ，−16.64, −6.4, 6.778とした。したがって，部分モルエントロピーの値を気体定数で割った値で示すと，塩化マグネシウムが3.084で塩化カルシウムが7.156になる。

任意の温度・圧力での標準状態における電解質の部分モルエントロピーは以下の関係式で求められる。
塩化マグネシウム水溶液と塩化カルシウム水溶液の
Pitzer式

標準状態における部分モルエントロピーの圧力依存性は部分モル体積の温度依存性を利用して次式で求めることができる。

\[
\left(\frac{\partial S}{\partial p} \right)_T = - \left(\frac{\partial V}{\partial T} \right)_p \tag{68}
\]

部分モルエントロピーの温度依存性は定圧モル熱容量を温度で割った量を温度に関して積分すれば求められるので、任意の温度・圧力における電解質の部分モルエントロピーは次式で求めることができる。

\[
\bar{S}^o(T, p) = \bar{S}^o(T_0, p_0) - \int_{p_0}^{p} \left(\frac{\partial V}{\partial T} \right)_p \, dp + \int_{T_0}^{T} C_v^o \, dT \tag{69}
\]

右辺の第二項は式(58)を用いて計算する。単位を J mol\(^{-1}\) K\(^{-1}\)に変換するために 10 で割ると次のようになる。

\[
- \int_{p_0}^{p} \left(\frac{\partial V}{\partial T} \right)_p \, dp = \left[\frac{z_{1,19}}{T_0} - z_{1,20} - 2z_{1,21}T_0 + \frac{z_{1,22}}{(T_0 - T_2)^2} - \frac{z_{1,23}}{(T_1 - T_0)^2} \right] (p - p_0)
\]

\[
+ \left[\frac{z_{2,19}}{T_0^2} - z_{2,20} - 2z_{2,21}T_0 + \frac{z_{2,22}}{(T_0 - T_2)^2} - \frac{z_{2,23}}{(T_1 - T_0)^2} \right] (p^2 - p_0^2)
\]

\[
+ \left[\frac{z_{3,19}}{T_0^3} - z_{3,20} - 2z_{3,21}T_0 + \frac{z_{3,22}}{(T_0 - T_2)^2} - \frac{z_{3,23}}{(T_1 - T_0)^2} \right] (p^3 - p_0^3) \tag{70}
\]

次に、式(69)の右辺の第三項の計算式を示す。\(C_v^o\)を与える式は式(28)に式(29)から式(32)を代入すれば求めることができる。そこで、圧力が \(p\) の時に温度が 298.15 K から \(T\) に変化した時の積分値を求めればよい。この計算式は次の通りである。
塩化マグネシウム水溶液と塩化カルシウム水溶液のPitzer式

\[\frac{C_p}{T} \int_{T_0}^{T} dT = z_{24}\ln\left(\frac{T}{T_0} \right) - z_{25}\left(\frac{1}{T} - \frac{1}{T_0} \right) + \frac{z_{26}}{2} \left[(\ln T)^2 - (\ln T_0)^2 \right] \]

\[+ z_{27}(T - T_0) + \frac{z_{28}(T^2 - T_0^2)}{2} + \frac{z_{29}}{T_2} \ln \left(\frac{T_0(T - T_2)}{(T_0 - T_2)T} \right) + \frac{z_{30}}{T_1} \ln \left(\frac{(T_1 - T_0)T}{T_1(T - T)} \right) \]

\[- \left[z_{1, 19} \left(\frac{1}{T_0^2} - \frac{1}{T^2} \right) + 2z_{1, 21}(T - T_0) \right] p \]

\[- \left[-z_{1, 22} \left(\frac{1}{(T - T_0)^2} - \frac{1}{(T_0 - T_2)^2} \right) + z_{1, 23} \left(\frac{1}{(T_1 - T)^2} - \frac{1}{(T_1 - T_0)^2} \right) \right] p \]

\[- \left[z_{2, 19} \left(\frac{1}{T_0^2} - \frac{1}{T^2} \right) + 2z_{2, 21}(T - T_0) \right] p^2 \]

\[- \left[-z_{2, 22} \left(\frac{1}{(T - T_0)^2} - \frac{1}{(T_0 - T_2)^2} \right) + z_{2, 23} \left(\frac{1}{(T_1 - T)^2} - \frac{1}{(T_1 - T_0)^2} \right) \right] p^2 \]

\[- \left[z_{3, 19} \left(\frac{1}{T_0^2} - \frac{1}{T^2} \right) + 2z_{3, 21}(T - T_0) \right] p^3 \]

\[- \left[-z_{3, 22} \left(\frac{1}{(T - T_0)^2} - \frac{1}{(T_0 - T_2)^2} \right) + z_{3, 23} \left(\frac{1}{(T_1 - T)^2} - \frac{1}{(T_1 - T_0)^2} \right) \right] p^3 (71) \]

\[\overline{S} (298.15K, 1.01325bar)の値, 式(70)から求められる値, そして式(71)から求められる値を式(69)の右辺に代入すれば, 任意の温度・圧力条件での電解質の部分モルエンタルピーを求めることができる。

以上のようにして標準状態における部分モルエンタルピーと部分モルエントロピーを求めることができれば, 標準状態における電解質の部分モルギブスエネルギー \(\overline{G} \) を次式で計算することができる。

\[\overline{G} (T, p) = \overline{H} (T, p) - T \overline{S} (T, p) (72) \]

7. 水溶液のギブスエネルギー, エンタルピー, エントロピー, 定圧熱容量, および密度

水1 kgに電解質（塩化マグネシウムあるいは塩化カルシウム）がm mol溶解している水溶液のギブスエネルギー, エンタルピー, エントロピー, 定圧熱容量, および密度の計算式を示す。

この水溶液のギブスエネルギー \(G^{\text{mol}} \) は, 水と電解質の標準状態における部分モルギブスエネルギー \(G^w \) と \(G^{\text{mol}} \) と, 水のモル質量 \(M_w \), 過剰ギブスエネルギー \(G^s \), 電解質の質量モル濃度, 気体定数, 絶対温
塩化マグネシウム水溶液と塩化カルシウム水溶液のPitzer式

塩化マグネシウム水溶液の

度を用いて次式で求めることができる。

\[
G_{\text{total}} = \left(\frac{1000}{M_w} \right) G_w^r + mG^r + G^E - RT \left\{ m(1 - \ln m) + 2m \left[1 - \ln (2m) \right] \right\} \quad (73)
\]

電解質の標準状態における部分モルギブスエネルギーの計算式は式(72)で示したものであり、過剰ギブスエネルギーの計算式は式(1)で示したものである。

この水溶液のエンタルピー \(H_{\text{total}} \) は水と電解質の標準状態における部分モルエンタルピー（\(H_w^r \) と \(H^r \)）、電解質の相対モルエンタルピー \(\phi_L \) を用いて次式で求ることができる。

\[
H_{\text{total}} = \left(\frac{1000}{M_w} \right) H_w^r + mH^r + m\phi_L \quad (74)
\]

電解質の標準状態における部分モルエンタルピーの計算式は式(61)で示したものであり、相対モルエンタルピーの計算式は式(18)で示したものである。

エンタルピーとギブスエネルギーの値を求めることができれば、エントロピーの値を計算することができる。この水溶液のエントロピーは次式で求めることができる。

\[
S_{\text{total}} = \frac{H_{\text{total}} - G_{\text{total}}}{T}
\]

ここで、過剰エントロピー \(S^E \) を次式で定義する。

\[
S^E = \frac{m\phi_L - G^E}{T} \quad (76)
\]

そこで、標準状態における水と電解質の部分モルエントロピーと過剰エントロピーを用いて式(75)を次のように表すことができる。

\[
S_{\text{total}} = \left(\frac{1000}{M_w} \right) S_w^r + mS^r + S^E + R \left\{ m(1 - \ln m) + 2m \left[1 - \ln (2m) \right] \right\} \quad (77)
\]

水1 kg に \(m \) モルの電解質が溶解している水溶液の温度を1 K 上昇させるために必要な熱量 \(C_p \) は、純水の定圧モル熱容量と式(27)を用いて計算できる電解質の見かけの定圧モル熱容量を用いて次式で求めることができる。

\[
C_p = \left(\frac{1000}{M_w} \right) C_{p,w}^r + m\phi C_p \quad (78)
\]

電解質のモル質量を \(M_0 \) と表すと、この水溶液の質量(g)は1000 + \(M_0 m \) であるので、水溶液1 g 当たりの熱容量は式(78)で求められた \(C_p \) 値を1000 + \(M_0 m \) で割れば得られる。

最後に、水溶液の密度を求める式を示す。水のモル体積 \(V_w^r \) と式(60)を用いて計算できる電解質の見かけのモル体積を用いると、水1 kg に \(m \) モルの電解質が溶解している水溶液の体積 \(V_{\text{total}} \) は次式で求めることができる。
塩化マグネシウム水溶液と
塩化カルシウム水溶液のPitzer式

\[V_{\text{total}} = \left(\frac{1000}{M_w} \right) V_w^0 + m \phi V \] (79)

この水溶液の密度 \(d_{\text{sln}} \) は式(79)で求められる \(V_{\text{total}} \) の値で 1000 + \(M_Qm \) を割れば得られる。つまり、次式で求めることができる。

\[d_{\text{sln}} = \frac{1000 + M_Qm}{V_{\text{total}}} \] (80)
塩化マグネシウム水溶液と
塩化カルシウム水溶液のPitzer式
付録1（その2） 記号一覧

<table>
<thead>
<tr>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>標準状態における電解質の部分モルエンタルピー $(J \cdot mol^{-1} \cdot K^{-1})$</td>
</tr>
<tr>
<td>$S(T, p)$</td>
<td>温度 T で圧力 p の時の標準状態における電解質の部分モルエンタルピー $(J \cdot mol^{-1} \cdot K^{-1})$</td>
</tr>
<tr>
<td>S_w</td>
<td>標準状態における水の部分モルエンタルピー $(J \cdot mol^{-1} \cdot K^{-1})$</td>
</tr>
<tr>
<td>T</td>
<td>温度 (K)</td>
</tr>
<tr>
<td>T_0</td>
<td>298.15 K</td>
</tr>
<tr>
<td>T_1</td>
<td>647 K</td>
</tr>
<tr>
<td>T_2</td>
<td>227 K</td>
</tr>
<tr>
<td>V_0, V_1, V_2</td>
<td>標準状態における電解質の部分モル体積を求めるための関数</td>
</tr>
<tr>
<td>V_{total}</td>
<td>水溶液の体積 (cm^3)</td>
</tr>
<tr>
<td>\bar{V}</td>
<td>標準状態における電解質の部分モル体積 $(cm^3 \cdot mol^{-1})$</td>
</tr>
<tr>
<td>V_w</td>
<td>標準状態における水の部分モル体積 $(cm^3 \cdot mol^{-1})$</td>
</tr>
<tr>
<td>ϕ</td>
<td>電解質の見かけのモル体積 $(cm^3 \cdot mol^{-1})$</td>
</tr>
<tr>
<td>W</td>
<td>水の質量 (kg)</td>
</tr>
<tr>
<td>z_1, …, z_{17}</td>
<td>$\beta(0)$, $\beta(1)$, C を計算するための係数</td>
</tr>
<tr>
<td>z_{24}, …, z_{30}, z_1, 18, …, z_{21}, z_2, 18, …, z_{22}, z_3, 18, …, z_{23}</td>
<td>標準状態における電解質の部分モル定圧熱容量や部分モル体積を計算するための係数</td>
</tr>
<tr>
<td>a_1, a_2</td>
<td>Pitzer 式でイオン強度に関連付けるパラメータ $(kg^{1/2} \cdot mol^{-1/2})$</td>
</tr>
<tr>
<td>$\beta(0)$, $\beta(1)$, $\beta(2)$</td>
<td>2 イオン間の相互作用を表すパラメータ $(kg \cdot mol^{-1})$</td>
</tr>
<tr>
<td>γ</td>
<td>イオンの平均活量係数</td>
</tr>
<tr>
<td>ϕ</td>
<td>浸透係数</td>
</tr>
</tbody>
</table>
文献

澁江靖弘（2008）塩化マグネシウム水溶液と塩化カルシウム水溶液の熱力学的性質の計算プログラム（その1）—Holmes 達の式を用いて—. 兵庫教育大学研究紀要, 33, 113–126.
澁江靖弘（2009）塩化マグネシウム水溶液と塩化カルシウム水溶液の熱力学的性質の計算プログラム（その2）—Holmes 速の式を用いて—. 兵庫教育大学研究紀要, 34, 99–110.